Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.028
Filtrar
1.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38569656

RESUMO

Diagnostic laboratories in Aotearoa, New Zealand (NZ) refer cultures from faecal samples positive for Shiga toxin genes to the national Enteric Reference Laboratory for isolation of Shiga toxin-producing Escherichia coli (STEC) for epidemiological typing. As there was variation in the culture media being referred, a panel of 75 clinical isolates of STEC, representing 28 different serotypes, was used to assess six commercially available media and provide guidance to clinical laboratories. Recommendations were subsequently tested for a 3-month period, where STEC isolations and confirmations were assessed by whole genome sequencing analysis against the culture media referred. CHROMagar™ STEC (CH-STEC; CHROMagar Microbiology, Paris, France) or CH-STEC plus cefixime-tellurite sorbitol MacConkey agar was confirmed inferior to CH-STEC plus blood agar with vancomycin, cefsulodin, and cefixime (BVCC). The former resulted in fewer STEC types (n = 18) being confirmed compared to those from a combination of CH-STEC and BVCC (n = 42). A significant (P < .05) association with an STEC's ability to grow on CH-STEC and the presence of the ter gene cluster, and eae was observed. Culturing screen positive STEC samples onto both CH-STEC and BVCC ensures a consistently higher recovery of STEC from all clinical samples in NZ than CH-STEC alone.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Escherichia coli Shiga Toxigênica/genética , Cefixima , Ágar , Nova Zelândia , Meios de Cultura , Vancomicina , Cefsulodina , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética
2.
Open Vet J ; 14(1): 571-576, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633183

RESUMO

Background: Camels are important animals in Egypt and other Arab countries on the basis of their economic value and ethnic culture. Escherichia coli is implicated in several gastrointestinal infections and outbreaks worldwide, especially in developing countries. It causes infections that might lead to death. Numerous biological activities, such as antioxidative, antibacterial, anti-diabetic, anti-mutagenic, anti-inflammatory, neuroprotective, and diuretic, are associated with coriander and coriander essential oils. Aim: This work targeted investigation of the prevalence, antibiogram, and occurrence of virulence genes of E. coli in camel meat liver and kidney. Besides, the anti-E. coli activity of coriander oil was further examined. Methods: Camel meat, liver, and kidneys were collected from local markets in Egypt. Isolation and identification of E. coli were performed. The antimicrobial susceptibility of the obtained E. coli isolates was screened using the disk diffusion assay. To detect the presence of virulence-associated genes (stx1, stx2, eaeA, and hylA gens), polymerase chain reaction was used. An experimental trial was done to investigate the anti-E. coli activity of coriander oil. Results: The obtained results revealed isolation of the following E. coli pathotypes: O17:H18, O128:H2, O119:H6, O103:H4, O145:H-, and O121:H7. The recovered E. coli isolates practiced multidrug resistance profiling with higher resistance toward Erythromycin, Nalidixic Acid, Clindamycin, and Ampicillin. However, the isolates were sensitive to Meropenem and cefoxitin. The recovered isolates had expressed different virulence attributes. Coriander oil of 2% could significantly reduce E. coli O128 count in camel meat by 65%. Conclusion: Therefore, strict hygienic measures are highly recommended during the processing of camel meat. The use of coriander oil during camel meat processing is highly recommended to reduce E. coli count.


Assuntos
Camelus , Escherichia coli Shiga Toxigênica , Animais , Escherichia coli Shiga Toxigênica/genética , Prevalência , Carne/microbiologia , Testes de Sensibilidade Microbiana/veterinária
3.
Food Microbiol ; 121: 104526, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637088

RESUMO

Korean style kimchi contaminated with Shiga toxin-producing Escherichia coli (STEC) O157:H7 was the cause of an outbreak in Canada from December 2021 to January 2022. To determine if this STEC O157:H7 has greater potential for survival in kimchi than other STEC, the outbreak strain and six other STEC strains (O26:H11, O91:H21, O103:H2, O121:H19, and two O157:H7) were inoculated individually at 6 to 6.5 log CFU/g into commercially sourced kimchi and incubation at 4 °C. At intervals of seven days inoculated and control kimchi was plated onto MacConkey agar to enumerate lactose utilising bacteria. The colony counts were interpreted as enumerating the inoculated STEC, since no colonies were observed on MacConkey agar plated with uninoculated kimchi. Over eight weeks of incubation the pH was stable at 4.10 to 4.05 and the STEC strains declined by 0.7-1.0 log, with a median reduction of 0.9 log. The linear rate of reduction of kimchi outbreak STEC O157:H7 was -0.4 log per 30 days (Slope Uncertainty 0.05), which was not significantly different from the other O157 and nonO157 STEC strains (P = 0.091). These results indicate that the outbreak was not due to the presence of strain better adapted to survival in kimchi than other STEC, and that STEC can persist in refrigerated Korean style kimchi with a minimal decline over the shelf-life of the product.


Assuntos
Escherichia coli O157 , Proteínas de Escherichia coli , Alimentos Fermentados , Escherichia coli Shiga Toxigênica , Ágar , Escherichia coli O157/genética , Escherichia coli Shiga Toxigênica/genética , Meios de Cultura , República da Coreia
4.
BMC Microbiol ; 24(1): 65, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402189

RESUMO

BACKGROUND: Camels harbouring multidrug-resistant Gram-negative bacteria are capable of transmitting various microorganisms to humans. This study aimed to determine the distribution of anti-microbial resistance among Escherichia coli (E. coli) isolated from the feces of apparently healthy camels in Egyptian abattoirs. Additionally, we sought to characterize Shiga toxin-producing E. coli (STEC) strains, assess their virulence potential, and investigate the possibility of camels spreading carbapenem- and colistin-resistant E. coli. METHODS: 121 fecal swaps were collected from camels in different abattoirs in Egypt. Isolation and identification of E. coli were performed using conventional culture techniques and biochemical identification. All isolates obtained from the examined samples underwent genotyping through polymerase chain reaction (PCR) of the Shiga toxin-encoding genes (Stx1 and Stx2), the carbapenemase-encoding genes (blaKPC, blaOXA-48, blaNDM, and blaVIM), and the mcr genes for mcr-1 to mcr-5. RESULT: Bacteriological examination revealed 75 E. coli isolates. PCR results revealed that one strain (1.3%) tested positive for Stx1, and five (6.6%) were positive for Stx2. Among the total 75 strains of E. coli, the overall prevalence of carbapenemase-producing E. coli was 27, with 7 carrying blaOXA48, 14 carrying blaNDM, and 6 carrying blaVIM. Notably, no strains were positive for blaKPC but a high prevalence rate of mcr genes were detected. mcr-1, mcr-2, mcr-3, and mcr-4 genes were detected among 3, 2, 21, and 3 strains, respectively. CONCLUSION: The results indicate that camels in Egypt may be a primary source of anti-microbial resistance (AMR) E. coli, which could potentially be transmitted directly to humans or through the food chain.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Animais , Colistina/farmacologia , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Camelus , beta-Lactamases/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli Shiga Toxigênica/genética , Toxinas Shiga/genética , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Plasmídeos
5.
Indian J Med Microbiol ; 47: 100535, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38350526

RESUMO

PURPOSE: Diarrhoeal illness accounts for a high morbidity and mortality both in paediatric as well as adult groups and diarrhoeagenic Escherichia coli occupies a top position as a causative agent of infectious diarrhoeal illness worldwide. The aim of the current investigation was to determine the virulence and pattern of antibiotic resistance of enteropathogenic, enterotoxigenic, and shiga toxigenic Escherichia coli that are linked to diarrhoea in patients of both adult and paediatric age groups. METHODS: A total of 50 consecutive, nonduplicate Escherichia coli isolates were collected from patients with gastro-enteritis who were admitted to different clinical wards Silchar Medical College and Hospital, Silchar, India. PCR was used to identify the virulence genes of EPEC (eaeA and bfpA), STEC (stx1, stx2, and eae) and ETEC (eltA, eltB, estA1 and estA2) in the isolates of E. coli. The antibiotic susceptibility pattern of virulent E. coli isolates were checked using disc diffusion method. Molecular typing of the virulent E. coli detected in the study based on enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) was also done. RESULT: Out of 50 E. coli isolates, 13 (26%) were found to carry atleast one virulence gene. 11 isolates harboured eae gene and were characterized as EPEC and two isolates carried stx1 gene of STEC. These virulent isolates showed different antibiotic susceptibility pattern and harboured single or multiple antibiotic resistance genes. ERIC PCR established 12 different clonal patterns of the virulent study isolates of E. coli harbouring. CONCLUSION: EPEC pathotypes were found to be the most detected pathotype in the stool samples. Majority of the virulent isolates were also resistant to multiple antibiotics which is a serious public health concern and therefore requires a proper surveillance and studies to track their reservoirs to contain their spread.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Gastroenterite , Escherichia coli Shiga Toxigênica , Humanos , Criança , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Centros de Atenção Terciária , Diarreia/microbiologia , Escherichia coli Shiga Toxigênica/genética , Gastroenterite/epidemiologia , Antibacterianos/farmacologia , Proteínas de Escherichia coli/genética
6.
PLoS One ; 19(2): e0281006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358989

RESUMO

Wildlife can carry pathogenic organisms, including viruses, bacteria, parasites, and fungi, which can spread to humans and cause mild to serious illnesses and even death. Spreading through animal feces, these pathogens significantly contributes to the global burden of human diseases. Therefore, the present study investigated the prevalence of zoonotic bacterial pathogens, such as Salmonella spp., Escherichia coli, and Shiga toxin-producing E. coli (STEC), in animal feces. Between September 2015 and August 2017, 699 wildlife fecal samples were collected from various agricultural production regions and mountainous areas in South Korea. Fecal samples were collected from wild mammals (85.26%, 596/699) and birds (14.73%, 103/699). Salmonella spp. and E. coli were present in 3% (21/699) and 45.63% (319/699) of the samples, respectively. Moreover, virulence genes stx1 and both stx1 and stx2 were detected in 13.30% (93/699) and 0.72% (5/699) of the samples, respectively. The 21 Salmonella spp. were detected in badgers (n = 5), leopard cats (n = 7), wild boars (n = 2), and magpies (n = 7); STEC was detected in roe deer, water deer, mice, and wild boars. Through phylogenetic and gene-network analyses, the Salmonella spp. isolates (n = 21 laboratory isolates, at least one isolate from each Salmonella-positive animal fecal sample, and n = 6 widely prevalent reference Salmonella serovars) were grouped into two major lineages: S. enterica subsp. enterica and S. enterica subsp. diarizonae. Similarly, 93 E. coli isolates belonged to stx1, including three major lineages (groups 1-3), and stx1 and stx2 detected groups. To the best of our knowledge, this is the first report of a wild leopard cat serving as a reservoir for Salmonella spp. in South Korea. The research findings can help manage the potential risk of wildlife contamination and improve precautionary measures to protect public health.


Assuntos
Cervos , Infecções por Escherichia coli , Escherichia coli Shiga Toxigênica , Suínos , Animais , Humanos , Camundongos , Animais Selvagens/microbiologia , Prevalência , Filogenia , Escherichia coli Shiga Toxigênica/genética , Cervos/microbiologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Sus scrofa , Salmonella/genética , Fezes/microbiologia
7.
Microbiol Spectr ; 12(3): e0305623, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38334385

RESUMO

Shiga-toxin-producing Escherichia coli (STEC) is associated with diarrhea and hemolytic uremic syndrome (HUS). STEC infections in Costa Rica are rarely reported in children. We gathered all the records of STEC infections in children documented at the National Children's Hospital, a tertiary referral hospital, from 2015 to 2020. Clinical, microbiological, and genomic information were analyzed and summarized. A total of 3,768 diarrheal episodes were reviewed. Among them, 31 STEC were characterized (29 fecal, 1 urine, and 1 bloodstream infection). The prevalence of diarrheal disease due to STEC was estimated at 0.8% (n = 29/3,768), and HUS development was 6.4% (n = 2/31). The stx1 gene was found in 77% (n = 24/31) of STEC strains. In silico genomic predictions revealed a predominant prevalence of serotype O118/O152:H2, accompanied by a cluster exhibiting allele differences ranging from 33 to 8, using a core-genome multilocus sequence typing (cgMLST) approach. This is the first study using a genomic approach for STEC infections in Costa Rica.IMPORTANCEThis study provides a comprehensive description of clinical, microbiological, genomic, and demographic data from patients who attended the only pediatric hospital in Costa Rica with Shiga-toxin-producing Escherichia coli (STEC) infections. Despite the low prevalence of STEC infections, we found a predominant serotype O118/O152:H2, highlighting the pivotal role of genomics in understanding the epidemiology of public health threats such as STEC. Employing a genomic approach for this pathogen for the first time in Costa Rica, we identified a higher prevalence of STEC in children under 2 years old, especially those with gastrointestinal comorbidities, residing in densely populated regions. Limitations such as potential geographic bias and lack of strains due to direct molecular diagnostics are acknowledged, emphasizing the need for continued surveillance to uncover the true extent of circulating serotypes and potential outbreaks in Costa Rica.


Assuntos
Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Criança , Humanos , Lactente , Escherichia coli Shiga Toxigênica/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Estudos Retrospectivos , Centros de Atenção Terciária , Costa Rica/epidemiologia , Diarreia/epidemiologia , Diarreia/microbiologia , Síndrome Hemolítico-Urêmica/complicações , Síndrome Hemolítico-Urêmica/epidemiologia , Síndrome Hemolítico-Urêmica/microbiologia , Genômica
8.
Schweiz Arch Tierheilkd ; 166(3): 131-140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38419484

RESUMO

INTRODUCTION: Shiga toxin-producing Escherichia (E.) coli (STEC) are zoonotic foodborne pathogens of significant public health importance. While ruminants are considered the main reservoir, wild animals are increasingly acknowledged as carriers and potential reservoirs of STEC. The aim of this study was to determine the occurrence of STEC in a total of 59 faecal samples of hunted wild boars (Sus scrofa) from two different regions in Switzerland (canton Thurgau in northern Switzerland and canton Ticino in southern Switzerland), and to characterise the isolates using a whole genome sequencing approach. After an enrichment step, Shiga-toxin encoding genes (stx) were detected by real-time PCR in 41 % (95 % confidence interval (95 %CI) 0,29 - 0,53) of the samples, and STEC were subsequently recovered from 22 % (95 %CI 0,13 - 0,34) of the same samples. Seven different serotypes and six different sequence types (STs) were found, with O146:H28 ST738 (n = 4) and O100:H20 ST2514 (n = 4) predominating. Subtyping of stx identified isolates with stx1c/stx2b (n = 1), stx2a (n = 1), stx2b (n = 6), and stx2e (n = 6). No isolate contained the eae gene, but all harboured additional virulence genes, most commonly astA (n = 10), hlyE (n = 9), and hra (n = 9). STEC O11:H5, O21:H21, and O146:H28 harboured virulence factors associated with extra-intestinal pathogenic E. coli (ExPEC), and STEC O100:H20 and O155:H26 possessed sta1 and/or stb and were STEC/enterotoxigenic E. coli (ETEC) hybrid pathotypes. Our results show that wild boars are carriers of STEC which may be distributed in the environment, possibly leading to the contamination of agricultural crops and water sources. The serogroups included STEC O146 which belongs to the most common non-O157 serogroups associated with human illness in Europe, with implications for public health. Since Stx2e-producing STEC have frequently been reported in swine and pork, STEC O100:H20 harbouring stx2e in faeces of wild boars may be relevant to free-range systems of pig farming because of the potential risk of transmission events at the wildlife-livestock interface.


INTRODUCTION: Les Escherichia (E.) coli producteurs de shiga-toxine (STEC) sont des agents pathogènes zoonotiques d'origine alimentaire qui revêtent une grande importance pour la santé publique. Alors que les ruminants sont considérés comme le principal réservoir, les animaux sauvages sont de plus en plus souvent reconnus comme porteurs et réservoirs potentiels de STEC. L'objectif de cette étude était de déterminer la présence de STEC dans un total de 59 échantillons fécaux de sangliers (Sus scrofa) chassés provenant de deux régions différentes de Suisse (canton de Thurgovie dans le nord de la Suisse et canton du Tessin dans le sud de la Suisse) et de caractériser les isolats en utilisant une approche de séquençage du génome entier. Après une étape d'enrichissement, les gènes codant pour la Shiga-toxine (stx) ont été détectés par PCR en temps réel dans 41% (intervalle de confiance à 95% (95%CI) 0,29 - 0,53) des échantillons, et les STEC ont ensuite été récupérés dans 22% (95%CI 0,13 - 0,34) des mêmes échantillons. Sept sérotypes différents et six types de séquence (ST) différents ont été trouvés, avec une prédominance de O146:H28 ST738 (n = 4) et O100:H20 ST2514 (n = 4). Le sous-typage des stx a permis d'identifier des isolats avec stx1c/stx2b (n = 1), stx2a (n = 1), stx2b (n = 6) et stx2e (n = 6). Aucun isolat ne contenait le gène eae, mais tous hébergeaient d'autres gènes de virulence, le plus souvent astA (n = 10), hlyE (n = 9) et hra (n = 9). Les STEC O11:H5, O21:H21 et O146:H28 présentaient des facteurs de virulence associés à des E. coli pathogènes extra-intestinaux (ExPEC), et les STEC O100:H20 et O155:H26 possédaient sta1 et/ou stb et étaient des pathotypes hybrides STEC/E. coli entérotoxinogène (ETEC).


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Doenças dos Suínos , Animais , Humanos , Suínos , Escherichia coli Shiga Toxigênica/genética , Suíça/epidemiologia , Proteínas de Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Sorotipagem/veterinária , Animais Selvagens , Toxina Shiga/genética , Sus scrofa , Doenças dos Suínos/epidemiologia
9.
Pediatr Nephrol ; 39(6): 1885-1891, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38189960

RESUMO

BACKGROUND: The gastrointestinal (GI) tract represents one of the main targets of typical hemolytic uremic syndrome (HUS) in children. In this observational study, we tried to establish (1) the main features of GI complications during STEC-HUS and (2) the relationship between Escherichia coli serotypes and Shiga toxin (Stx) variants with hepatopancreatic involvement. METHODS: A total of 79 STEC-HUS patients were admitted to our pediatric nephrology department between January 2012 and June 2021. Evidence of intestinal, hepatobiliary, and pancreatic involvements was reported for each patient, alongside demographic, clinical, and laboratory features. Frequency of gastrointestinal complications across groups of patients infected by specific E. coli serotypes and Stx gene variants was evaluated. RESULTS: Six patients developed a bowel complication: two developed rectal prolapse, and four developed bowel perforation which resulted in death for three of them and in bowel stenosis in one patient. Acute pancreatitis was diagnosed in 13 patients. An isolated increase in pancreatic enzymes and/or liver transaminases was observed in 41 and 15 patients, respectively. Biliary sludge was detected in three, cholelithiasis in one. Forty-seven patients developed direct hyperbilirubinemia. Neither E. coli serotypes nor Shiga toxin variants correlated with hepatic or pancreatic involvement. CONCLUSIONS: During STEC-HUS, GI complications are common, ranging from self-limited elevation of laboratory markers to bowel perforation, a severe complication with a relevant impact on morbidity and mortality. Hepatopancreatic involvement is frequent, but usually short-lasting and self-limiting.


Assuntos
Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Perfuração Intestinal , Pancreatite , Escherichia coli Shiga Toxigênica , Criança , Humanos , Infecções por Escherichia coli/complicações , Doença Aguda , Síndrome Hemolítico-Urêmica/complicações , Toxina Shiga , Escherichia coli Shiga Toxigênica/genética
10.
Nucleic Acids Res ; 52(2): 856-871, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38084890

RESUMO

Shiga toxin (Stx) released by Shiga toxin producing Escherichia coli (STEC) causes life-threatening illness. Its production and release require induction of Stx-encoding prophage resident within the STEC genome. We identified two different STEC strains, PA2 and PA8, bearing Stx-encoding prophage whose sequences primarily differ by the position of an IS629 insertion element, yet differ in their abilities to kill eukaryotic cells and whose prophages differ in their spontaneous induction frequencies. The IS629 element in ϕPA2, disrupts an ORF predicted to encode a DNA adenine methyltransferase, whereas in ϕPA8, this element lies in an intergenic region. Introducing a plasmid expressing the methyltransferase gene product into ϕPA2 bearing-strains increases both the prophage spontaneous induction frequency and virulence to those exhibited by ϕPA8 bearing-strains. However, a plasmid bearing mutations predicted to disrupt the putative active site of the methyltransferase does not complement either of these defects. When complexed with a second protein, the methyltransferase holoenzyme preferentially uses 16S rRNA as a substrate. The second subunit is responsible for directing the preferential methylation of rRNA. Together these findings reveal a previously unrecognized role for rRNA methylation in regulating induction of Stx-encoding prophage.


Assuntos
Metiltransferases , Prófagos , Escherichia coli Shiga Toxigênica , Humanos , Infecções por Escherichia coli/microbiologia , Metiltransferases/genética , Prófagos/genética , RNA Ribossômico 16S , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/patogenicidade , Escherichia coli Shiga Toxigênica/virologia , Virulência
11.
Cytokine ; 173: 156421, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944420

RESUMO

BACKGROUND: The Shiga toxin-producing Escherichia coli (STEC) infects animals and induces acute intestinal inflammation. Long non-coding RNAs (lncRNAs) are known to play crucial roles in modulating inflammation response. However, it is not clear whether lncRNAs are involved in STEC-induced inflammation. METHODS AND RESULTS: To understand the association of lncRNAs with STEC infection, we used RNA-seq technology to analyze the profiles of lncRNAs in Mock-infected and STEC-infected human intestinal epithelial cells (HIECs). We detected a total of 702 lncRNAs differentially expressed by STEC infection. 583 differentially expressed lncRNAs acted as competitive microRNAs (miRNAs) binding elements in regulating the gene expression involved in TNF signaling pathway, IL-17 signaling pathway, PI3K-Akt signaling pathway, and apoptosis pathways. We analyzed 3 targeted genes, TRADD, TRAF1 and TGFB2, which were differentially regulated by mRNA-miRNA-lncRNA interaction network, potentially involved in the inflammatory and apoptotic response to STEC infection. Functional analysis of up/downstream genes associated with differentially expressed lncRNAs revealed their role in adheres junction and endocytosis. We also used the qRT-PCR technique to validate 8 randomly selected differentially expressed lncRNAs and mRNAs in STEC-infected HIECs. CONCLUSION: Our results, for the first time, revealed differentially expressed lncRNAs induced by STEC infection of HIECs. The results will help investigate the molecular mechanisms for the inflammatory responses induced by STEC.


Assuntos
MicroRNAs , RNA Longo não Codificante , Escherichia coli Shiga Toxigênica , Animais , Humanos , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA-Seq , Fosfatidilinositol 3-Quinases/genética , MicroRNAs/genética , Inflamação , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica
12.
Meat Sci ; 208: 109378, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37952270

RESUMO

Investigation on the distribution and biological characteristics of Shiga-toxin producing Escherichia coli (STEC) during beef processing is essential for in-plant critical control points and food safety risk assessment. Serogroups and subtypes of stx genes of STEC strains isolated from beef processing lines were first investigated. Identification to cross-contamination among different sampling sites was further conducted by combining multilocus sequence typing (MLST) with the previous distribution and characterization data. The PCR-positive rate for STEC in 435 samples from two slaughter plants in China was 14.3% and the isolation rate for the 62 PCR positive and the entire set of 435 samples were 26% and 3.68% respectively. The existence of serotype O157:H7 (33%) and serogroups O121 (42%) and O26 (21%) as well as the high detection rate of high pathogenic gene stx2a (68%) in these serogroups indicated potential risk to the safety of beef. Traceability analysis showed that hide plays a critical role in cross-contamination between feces, lairage pens and post-washing carcasses from a molecular perspective. Intervening measures revolves around de-hiding should be involved in the in-plant safety control policy according to the tracing analysis.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Bovinos , Animais , Escherichia coli Shiga Toxigênica/genética , Proteínas de Escherichia coli/genética , Tipagem de Sequências Multilocus , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Sorogrupo , Fezes , Infecções por Escherichia coli/veterinária
13.
Rapid Commun Mass Spectrom ; 38(1): e9667, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38073204

RESUMO

RATIONALE: Pathogenic bacteria often carry prophage (bacterial viruses) and plasmids (small circular pieces of DNA) that may harbor toxin, antibacterial, and antibiotic resistance genes. Proteomic characterization of pathogenic bacteria should include the identification of host proteins and proteins produced by prophage and plasmid genomes. METHODS: Protein biomarkers of two strains of Shiga toxin-producing Escherichia coli (STEC) were identified using antibiotic induction, matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF-TOF) tandem mass spectrometry (MS/MS) with post-source decay (PSD), top-down proteomic (TDP) analysis, and plasmid sequencing. Alphafold2 was also used to compare predicted in silico structures of the identified proteins to prominent fragment ions generated using MS/MS-PSD. Strain samples were also analyzed with and without chemical reduction treatment to detect the attachment of pendant groups bound by thioester or disulfide bonds. RESULTS: Shiga toxin was detected and/or identified in both STEC strains. For the first time, we also identified the osmotically inducible protein (OsmY) whose sequence unexpectedly had two forms: a full and a truncated sequence. The truncated OsmY terminates in the middle of an α-helix as determined by Alphafold2. A plasmid-encoded colicin immunity protein was also identified with and without attachment of an unidentified cysteine-bound pendant group (~307 Da). Plasmid sequencing confirmed top-down analysis and the identification of a promoter upstream of the immunity gene that is activated by antibiotic induction, that is, SOS box. CONCLUSIONS: TDP analysis, coupled with other techniques (e.g., antibiotic induction, chemical reduction, plasmid sequencing, and in silico protein modeling), is a powerful tool to identify proteins (and their modifications), including prophage- and plasmid-encoded proteins, produced by pathogenic microorganisms.


Assuntos
Escherichia coli , Escherichia coli Shiga Toxigênica , Escherichia coli/genética , Prófagos/genética , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Bactérias , Plasmídeos/genética , Proteínas de Ligação a DNA/genética , Antibacterianos , Biomarcadores , Escherichia coli Shiga Toxigênica/química , Escherichia coli Shiga Toxigênica/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
14.
Emerg Infect Dis ; 30(1): 199-202, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147535

RESUMO

In Queensland, Australia, 31 of 96 Shiga toxin‒producing Escherichia coli cases during 2020-2022 were reported by a specialty pathology laboratory servicing alternative health practitioners. Those new cases were more likely to be asymptomatic or paucisymptomatic, prompting a review of the standard public health response.


Assuntos
Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Humanos , Escherichia coli Shiga Toxigênica/genética , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/epidemiologia , Queensland/epidemiologia , Diarreia/diagnóstico , Síndrome Hemolítico-Urêmica/diagnóstico , Austrália/epidemiologia
15.
Toxins (Basel) ; 15(12)2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-38133173

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) infections cause outbreaks of severe disease in children ranging from bloody diarrhea to hemolytic uremic syndrome (HUS). The adherent factor intimin, encoded by eae, can facilitate the colonization process of strains and is frequently associated with severe disease. The purpose of this study was to examine and analyze the prevalence and polymorphisms of eae in clinical STEC strains from pediatric patients under 17 years old with and without HUS, and to assess the pathogenic risk of different eae subtypes. We studied 240 STEC strains isolated from pediatric patients in Finland with whole genome sequencing. The gene eae was present in 209 (87.1%) strains, among which 49 (23.4%) were from patients with HUS, and 160 (76.6%) were from patients without HUS. O157:H7 (126, 60.3%) was the most predominant serotype among eae-positive STEC strains. Twenty-three different eae genotypes were identified, which were categorized into five eae subtypes, i.e., γ1, ß3, ε1, θ and ζ3. The subtype eae-γ1 was significantly overrepresented in strains from patients aged 5-17 years, while ß3 and ε1 were more commonly found in strains from patients under 5 years. All O157:H7 strains carried eae-γ1; among non-O157 strains, strains of each serotype harbored one eae subtype. No association was observed between the presence of eae/its subtypes and HUS. However, the combination of eae-γ1+stx2a was significantly associated with HUS. In conclusion, this study demonstrated a high occurrence and genetic variety of eae in clinical STEC from pediatric patients under 17 years old in Finland, and that eae is not essential for STEC-associated HUS. However, the combination of certain eae subtypes with stx subtypes, i.e., eae-γ1+stx2a, may be used as risk predictors for the development of severe disease in children.


Assuntos
Adesinas Bacterianas , Infecções por Escherichia coli , Proteínas de Escherichia coli , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Adolescente , Criança , Humanos , Adesinas Bacterianas/genética , Infecções por Escherichia coli/epidemiologia , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Finlândia/epidemiologia , Síndrome Hemolítico-Urêmica/epidemiologia , Síndrome Hemolítico-Urêmica/genética , Sorotipagem , Escherichia coli Shiga Toxigênica/genética , Populações Escandinavas e Nórdicas
16.
Biomolecules ; 13(12)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38136597

RESUMO

Edema disease (ED) is a severe and lethal infectious ailment in swine, stemming from Shiga-toxin-producing Escherichia coli (STEC). An efficient, user-friendly, and safe vaccine against ED is urgently required to improve animal welfare and decrease antibiotic consumption. Recombinant attenuated Salmonella vaccines (RASV) administered orally induce both humoral and mucosal immune responses to the immunizing antigen. Their potential for inducing protective immunity against ED is significant through the delivery of STEC antigens. rSC0016 represents an enhanced recombinant attenuated vaccine vector designed for Salmonella enterica serotype Choleraesuis. It combines sopB mutations with a regulated delay system to strike a well-balanced equilibrium between host safety and immunogenicity. We generated recombinant vaccine strains, namely rSC0016 (pS-FedF) and rSC0016 (pS-rStx2eA), and assessed their safety and immunogenicity in vivo. The findings demonstrated that the mouse models immunized with rSC0016 (pS-FedF) and rSC0016 (pS-rStx2eA) generated substantial IgG antibody responses to FedF and rStx2eA, while also provoking robust mucosal and cellular immune responses against both FedF and rStx2eA. The protective impact of rSC0016 (pS-FedF) against Shiga-toxin-producing Escherichia coli surpassed that of rSC0016 (pS-rStx2eA), with percentages of 83.3%. These findings underscore that FedF has greater suitability for vaccine delivery via recombinant attenuated Salmonella vaccines (RASVs). Overall, this study provides a promising candidate vaccine for infection with STEC.


Assuntos
Infecções por Escherichia coli , Vacinas contra Salmonella , Salmonella enterica , Escherichia coli Shiga Toxigênica , Animais , Camundongos , Suínos , Escherichia coli Shiga Toxigênica/genética , Salmonella , Vacinas Sintéticas/genética , Imunização
17.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962953

RESUMO

AIM: This study aims to investigate the prevalence of intestinal pathogenic Escherichia coli (InPEC) in healthy pig-related samples and evaluate the potential virulence of the InPEC strains. METHODS AND RESULTS: A multiplex PCR method was established to identify different pathotypes of InPEC. A total of 800 rectal swab samples and 296 pork samples were collected from pig farms and slaughterhouses in Hubei province, China. From these samples, a total of 21 InPEC strains were isolated, including 19 enteropathogenic E. coli (EPEC) and 2 shiga toxin-producing E. coli (STEC) strains. By whole-genome sequencing and in silico typing, it was shown that the sequence types and serotypes were diverse among the strains. Antimicrobial susceptibility assays showed that 90.48% of the strains were multi-drug resistant. The virulence of the strains was first evaluated using the Galleria mellonella larvae model, which showed that most of the strains possessed medium to high pathogenicity. A moderately virulent EPEC isolate was further selected to characterize its pathogenicity using a mouse model, which suggested that it could cause significant diarrhea. Bioluminescence imaging (BLI) was then used to investigate the colonization dynamics of this EPEC isolate, which showed that the EPEC strain could colonize the mouse cecum for up to 5 days.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Virulência , Diarreia , Fatores de Virulência , Escherichia coli Shiga Toxigênica/genética
18.
BMC Microbiol ; 23(1): 262, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723460

RESUMO

BACKGROUND: Shiga toxin-producing E. coli (STEC) is a major cause of foodborne diseases accompanied by several clinical illnesses in humans. This research aimed to isolate, identify, and combat STEC using novel alternative treatments, researchers have lately investigated using plant extract to produce nanoparticles in an environmentally acceptable way. At various gamma-ray doses, gamma irradiation is used to optimize the conditions for the biogenically synthesized silver nanoparticles (Ag NPs) using an aqueous extract of clove as a reducing and stabilizing agent. METHODS: On a specific medium, 120 vegetable samples were screened to isolate STEC and molecularly identified using real-time PCR. Moreover, the antibacterial and antibiofilm activities of biogenically synthesized Ag NPs against the isolated STEC were examined. RESULTS: Twenty-five out of 120 samples of eight types of fresh vegetables tested positive for E. coli, as confirmed by 16S rRNA, of which three were positive for the presence of Stx-coding genes, and six were partially hemolytic. Seven antibiotic disks were used to determine antibiotic susceptibility; the results indicated that isolate STX2EC had the highest antibiotic resistance. The results demonstrated that Ag NPs were highly effective against the STEC isolates, particularly the isolate with the highest drug resistance, with inhibition zones recorded as 19 mm for STX2EC, 11 mm for STX1EC1, and 10 mm for STX1EC2 at a concentration of 108 µg/mL. MICs of the isolates STX1EC1, and STX1EC2 were 13.5 µg/mL whereas it was detected as 6.75 µg/mL for STX2EC. The percentages of biofilm inhibition for STX1EC2, STX1EC1, and STX2EC, were 78.7%, 76.9%, and 71.19%, respectively. CONCLUSION: These findings suggest that the biogenic Ag NPs can be utilized as a new promising antibacterial agent to combat biofouling on surfaces.


Assuntos
Nanopartículas Metálicas , Escherichia coli Shiga Toxigênica , Syzygium , Humanos , Escherichia coli Shiga Toxigênica/genética , Verduras , Prata/farmacologia , Raios gama , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia
19.
Methods Mol Biol ; 2967: 63-73, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608103

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is a group of human foodborne pathogens transmitted to humans through the consumption of different types of food. Their detection is mainly performed by targeting specific serogroups by classical microbiological methods and, later, by molecular typing with different techniques. The application of multiplex real-time PCR (qPCR) can significantly improve the turnaround time of the existing methodologies as in one single run it is possible to detect and characterize specific microorganisms. In the present chapter, a pentaplex qPCR assay is described for the identification of STEC which may also be applied for the rapid screening of these pathogens in different types of foods. The assay targets the most important virulence factors of these microorganisms, the genes stx1, stx2, and eae, along with the rfbE gene which encodes for the "O157" antigen as this is the most prevalent serogroup among all STEC, as well as an internal amplification control to rule out false-negative results due to qPCR inhibition.


Assuntos
Escherichia coli Shiga Toxigênica , Humanos , Escherichia coli Shiga Toxigênica/genética , Reação em Cadeia da Polimerase em Tempo Real , Alimentos , Bioensaio , Técnicas Microbiológicas
20.
Microb Drug Resist ; 29(9): 407-415, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37579256

RESUMO

Background: Shiga toxin-producing Escherichia coli (STEC) has been identified as an important etiologic agent of human disease in Egypt. Aims: To investigate the occurrence and describe the characterization as well as prevalence of STEC in Greater Cairo hospitals as well as molecular characterization of virulence and resistance genes. Methods: Four hundred seventy E. coli clinical isolates were collected from eight hospitals and analyzed by genotypic and phenotypic methods for STEC, followed by histopathological examination and scoring of different organs lesions. Results: The highest proportion of isolates was from urine (151 isolates), whereas the lowest was from splenic drain (3 isolates). In tandem, when serogrouping was performed, 15 serogroups were obtained where the most prevalent was O157 and the least prevalent was O151. All isolates were positive when screened for identity gene gad A, while only typable strains were screened for seven virulence genes stx1 (gene encoding Shiga toxin 1), stx2 (gene encoding Shiga toxin 2), tsh (gene encoding thermostable hemagglutinin), eaeA (gene encoding intimin), invE (gene encoding invasion protein), aggR (gene encoding aggregative adherence transcriptional regulator), and astA (aspartate transaminase) where the prevalence was 48%, 30%, 50%, 57%, 7.5%, 12%, and 58%, respectively. Of 254 typable isolates, 152 were STEC carrying stx1 or stx2 genes or both. Conclusions: Relying on in vivo comparison between different E. coli pathotypes via histopathological examination of different organs, E. coli pathotypes could be divided into mild virulent, moderate virulent, and high virulent strains. Statistical analysis revealed significant correlation between different serogroups and presence of virulence genes.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Escherichia coli Shiga Toxigênica/genética , Virulência/genética , Prevalência , Proteínas de Escherichia coli/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Fatores de Virulência/genética , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Fezes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...